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Abstract. Time-dependent perturbation theory is used to calculate the probabilities for the 
states and their transitions of a cluster of two spins. The time dependence is included in the 
boundary conditions which are used as described in a recent paper by Bolton and Johnson. 
The ideas are tested briefly on the simple mean-field case. The structure of the transition 
probabilities suggested by Suzuki and Kubo is verified with expressions dependent on the 
nature of the coupling between the lattice and the spins. 

1. Introduction 

We are concerned here with the approach to equilibrium of an Ising system governed by 
the master equation for the probability function P(s l ,  . . . , s N ;  t ) .  The variables si, 
i = 1 . . , N are scalars taking the values f 1 and are the z components of the spin vector 
operator representing spin-:. The spin system is in contact with a heat bath which 
allows spin flips to occur. The transition probabilities are denoted by W(sl, . . . , si + 

- s i , .  . . , sN).  The master equation for the Ising system was first discussed by Glauber 
(1963); it is 

= -1 w(sI,. * . f si -s i ,  . , sN)P(sl, . . si, . . * , sN; f )  
i 

w(sl,. . . 9 -si + s i , .  . . , sN)P(sl,. 7 - s i , .  . . SN; f ) .  (1.1) 
i 

Glauber considered this equation as the starting point but it must be able to be derived 
from a Liouville equation. 

Heims (1965) obtained the general master equation for the Ising model interacting 
with a lattice, without bringing in the boundary conditions; he used a different 
interaction Hamiltonian from the one we shall use and applied his equation to the case 
of high temperatures, well above transition temperature. Our aim in the present paper 
is different from Heims; we are concerned with the structures of the probability of the 
state of the system and of the transition probabilities in the master equation and to this 
end we have chosen a two-spin system. Essentially we have derived the time depen- 
dence of the constant-coupling approximation originally introduced by Kasteleijn and 
von Kranendonk (1956). 
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Suzuki and Kubo (1968) suggested a possible form for the transition probabilities 
which satisfies the condition of detailed balance in equilibrium and this has been used 
for example to describe some properties of the evolution toward equilibrium of a system 
in the Bragg-Williams approximation (Bolton and Leng 1973, 1975) and in the 
Bethe-Peierls approximation (Batterham et a1 1976). In these latter calculations the 
Fokker-Planck equation was derived before the solution was sought but in the present 
calculations we proceed from the Liouville equation to the master equation. 

The reservoir or heat bath is considered to be a set of uncoupled boson or fermion 
modes with a correlation time much shorter than the time scales of interest in the spin 
systems, so that we may consider it to remain in thermal equilibrium. The structure of 
the transition probabilities depends on the structure of the interaction between the 
reservoir and the spin system. The properties of a two-spin system are defined in terms 
of the two quantities 

where the averages are calculated in terms of P(sl . . . sN, t ) .  The two spins s l ,  s2 are 
nearest neighbours on a plane square lattice with the coordination number y = 4 and 
the usual king nearest-neighbour interactions are taken. The spins neighbouring the 
two selected spins are each assumed to have the self-consistent value of ~ ( t ) .  These 
boundary conditions are called extended mean-field boundary conditions and were 
explored in some detail by Bolton and Johnson (1976). Since the direct interaction 
between the two spins is the full king interaction defined by the exchange energy 

- J s ~ s ~  

the problem we are considering is the time-dependent constant coupling approximation 
originally introduced by Kasteleijn and van Kranendonk (1956) to examine the static 
properties of the Ising model. In 0 2 we give a brief survey of the method as applied to a 
single-site cluster where a single spin s1 is surrounded by the y boundary spins each 
carrying the average spin (sl). This is just the familiar mean-field approximation and 
since the solution is already known in the literature (Suzuki and Kubo 1968, Goldstein 
and Scully 1973, Wang 1973 and Metui eta1 1975) we present it only briefly as a survey 
of our method before moving on to the two-site cluster in 0 3. The solution by Metui et 
a1 (1975) in Bragg-Williams approximation has been constructed from that presented 
here by combining N single-site solutions. 

2. The statistical perturbation theory applied to the simple mean-field problem 

The Liouville equation is expressed in terms of the density operator p ( t )  and since the 
reservoir is assumed to be always in thermal equilibrium, we can factorize p ( t )  as follows 

p(d =psw OfR, (2.1) 
where p , ( t )  refers to spin variables only and fR is the equilibrium density operator for 
the reservoir. The spin density matrix remains diagonal in the basis set of unperturbed 
states of the spin system and this is consistent with the form of the probability function 
proposed by Glauber (1963) and used by Bolton and Johnson (1976). For one spin, 

P ( s ;  t)=$(l+s1s(t)) (2.2) 
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and for two spins, 

(2.3) 
1 

P(s1, s2;  t )  =$1 + ( S l + S Z ) S ( ~ ) + S l ~ Z ~ ( t ) l .  

The notation is that of Goldstein and Scully (1973). The Liouville equation of 
motion is written in the interaction representation and to second order of perturbation 
the equation for p,(t) is 

- V(t)ps @ f R  v(t’) - V(t’)ps @ f R V ( f )  +ps @ f R  v(t’) v(t)), 

V(t) = exp(iHot/h)Vexp(-iH0t/h). (2.5) 

(2.4) 
where 

The probability functions used in the master equation are interpreted as the diagonal 
elements of ps(t ) .  For example, for the single-site cluster, we have 

P(s1= 1; t)=(+llp,(t)l+l)  

P(s1= - 1 ;  f ) = ( - l ~ p s ( f ) ~ - l )  

and these can be combined into (2.2). 
For the single-site cluster we have 

where Ho = H, + H R ,  

(2.10) 

(2.11) 

(2.12) 

s1 =si, (2.13) 

[si, s:] = 2isf. (2.14) 

We include the general symbol for the coordination number: so that we can put 
y = 4 for the plane square and y = 6 for the simple cubic. Thus 

V(t> = E  ga{exp[i(2yJs/R-oa)t]s;bQ +HC}. 
a 

Substituting V(t )  into (2.4) we obtain for the matrix element (+ l(p,(t)l+ 1) 

(2.15) 
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with similar equations for the other elements. In the equations for the diagonal matrix 
elements the right-hand sides contain only diagonal elements since the coefficients of 
the off-diagonal elements contain factors like (bb)R and (btbt)R which vanish 
since the reservoir is in equilibrium. For the off-diagonal elements the equation for 
(+ llp,(t)( - l), for example, involves only off-diagonal elements. The equations are 
homogeneous so that if the off-diagonal matrix elements are zero initially, they remain 
zero for all time. 

To proceed. We assume the reservoir spectrum to be dense (this in effect follows 
from the assumption of equilibrium) so that the sum over discrete modes may be 
replaced by an integral over a continuum with density of states D(w)  and interaction 
strength g ( w ) .  We further assume the spectrum to be broad so that the correlation time 
of the reservoir is very much shorter than the mean time between spin transitions. 
Integration over w, then yields an integrand in t’ which is strongly peaked at t’ = t with 
essentially a delta function behaviour. Integration over t’ then yields terms which 
depend on p,(t’) for t’ < t. That is, we have a Markov process. 

aP(+l; ‘ ) =  --87rD(o)g2(w)L3(2yJs/h-o)[fi(w)P(+ 1;  t)-(l*fi(w))P(- 1; t ) ]  

where 

Thus, we have 

at h2 
1 

(2.16) 

f i  = (b t b ) ~  = TrR{btb ‘fR> = l/[eXp(Pho) 11. 
The upper sign in the expressions refers to a boson reservoir and the lower sign to a 
fermion reservoir. Equation (2.16) is a master equation of the kind specified in (1.1) 
and the transition probabilities can readily be seen to be of the form given in Bolton and 
Johnson with their coefficient a(s)/2a identified as 

a(s)/2a = 47rD(s)g2(s)B(s)/h2, (2.17) 

where D(s)  and g(s) have been appropriately re-defined, with 

coth as, bosons 

1, fermions 
and 

a = PyJ. 

(2.18) 

(2.19) 

3. The cluster of two sites 

We shall treat the interaction between the two spins s1 and s2 exactly, and assign the spin 
s( t )  defined by 

= (4 = (sd (3.1) 
to the remaining nearest-neighbour sites surrounding this pair. The Hamiltonian is 

We assume the particles to interact with the reservoir independently of one another. 
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This is equivalent to each spin having its own reservoir and we write 

H R  = 1 ha, (bLba + aLa,) 
U 

so that the interaction between spin system and reservoir may be written 

v = 1  ga(S:bL +s:UL)+HC. 
U 

(3.3) 

(3.4) 

Further, since the two reservoirs are mutually isolated we may formally write the 
density matrix for this two open system as 

p(t)=ps(t)@fRI @fR2; 

this factorization is to be understood in the sequel. We have also considered the 
inclusion of the ‘rotating wave’ terms s:b, +s:a, and HC but they do not affect the final 
result. 

The perturbation treatment allows us to express the spin system in terms of the basis 
set of states of the unperturbed Hamiltonian. We use the general notation Is1, s2), 
remembering that sl, s2 can only take the values * 1. 

Then, 

~ 0 1 s 1 ,  s2, (nu))=( - ( y -  1 ~ ( s l + s z ) s - ~ s l s 2 + ~  fiaanuIs1, s2, (nu))) (3.5) 

and s l ,  s2 and nu on the right-hand side of (3.5) are eigenvalues. We use the following 
relations for spin operators and phonon operators: 

(3.6) 

(3.7) 

(3.8) 

We find in the interaction representation that 

(3.9) 

We substitute for V(t) from (3.9) into (2.4) and again consider the matrix elements in 
the representation {Isl, sJ}. We denote the matrix elements by (sIs2(ps(f) ls1sZ) with the 
abbreviations (+ + (p,(t)l+ +), etc for the individual elements. Consider for example 
the matrix elements for the state I + +). We have 

(3.10) 
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Taking the fourth term in the integrand of (3.10) we have 

VI + +) = 1 g, exp{it[2(y - 1)Js/11-oa1}2 exp (a, 1 + -)+bel - +)) 
a 

and 

V V / +  + ) = C  1 gagp exp{it[2(y- l)Js/h-w,]}exp{-it’[2(y- l)Js/h-wp]} 
a @  

x4(bj3ba +a iaa )exp  

+(terms involving baa,, a d a ) [  - -). 

Taking the trace over the reservoirs the coefficient of I - -) vanishes and we have 

Tr( + + IpJR V’ VI + + ) 

=I g:exp[i{2[(y- 1)~s+Il/h-w,}(t-t’)TI8ii ,(+ +Ips(t’)l+ +). 
a 

The first term in (3.10) is the Hermitian conjugate of this and together the first and 
fourth terms combine to give 

1 gf 16 cos[(w+-wa)(t-t’)Iff,(+ +lPs(t ’ ) l+  +>, 
a 

where 

w* = 2J[(y - 1)s f 11/11. 

Similarly, the second and third terms give 

(3.11) 

-C 8~8cos[(w+-wa)( t - t ’ ) I ( l*ri , ) ( (+ - I p s / + - > + ( -  +Ips/-  +>), 
OL 

where as usual the upper sign refers to the boson reservoir and the lower sign to the 
fermion reservoir. As before we assume that the reservoir has a broad dense spectrum 
so that 

W ;+lam d o D ( w )  

I-: 
and the integral over t’ is 

dt’ co~[(w+-w)(t-t’)]= d ( w + - w ) .  

Proceeding as in the one-particle case and using the above result, we find that (3.10) 
reduces to 

(3.12) 
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Similarly we find 

a 
-(--Ips/- - >  
at 

and 

A (w) = 87rD(w)g2(w)/h2. 

(3.13) 

(3.14) 

As in the one-particle case the off-diagonal elements do not appear in (3.13) since the 
reservoirs remain in equilibrium. We have a similar equation for the diagonal matrix 
element ( -  +Ips/  - +) which, by the symmetry of the cluster, equals (+ - Ips]  + ->. For 
the off -diagonal matrix elements the equations again contain only off-diagonal ele- 
ments because of the independence of the interactions of spins with their separate 
reservoirs. 

The master equation that we need for this cluster is 

a 
- ~ ( s l , s z ; ~ ) = ~ ( s l , s z ; ~ ) ( - W ( s l , ~ 2 ~  - s2) -W(s1+ - s 1 , s 2 ) )  
at 

+ P ( - s ~ ,  ~ 2 ;  t)W(-Si+Si,  ~ 2 )  + P ( s ~ ,  - ~ 2 ;  t )  W(s1, - s ~ - + s Z ) .  (3.15) 

We now identify the diagonal matrix elements as state probabilities and write 

R S l ,  s2; t )  = (~1~21Ps(t)lsIs2).  (3.16) 

A comparison of (3.15) with (3.12) and (3.13) allows us to make the identifications 

W(1+ - 1 ,  1)=  W(1, 1+ -1)=A(w+)i i (o+)=~A(w+)B(o+)( l - tanh$hw+) (3.17) 

W( - 1 + 1,  1) = W( 1 ,  - 1 + 1)  = A (U+)( 1 * t (U+))  = ;A (o+)B (U+)( 1 + tanh ;/? ho,) 
(3.18) 

W( - 1 3  1, - 1) = W( - 1, - 1 + 1) =A(w-)( l  * Z ( w - ) )  

= fA (m-)B(w-)(l+ tanh fPAo-)  (3.19) 

W( 1 + - 1,  - 1) = W( - 1, 1 + - 1) = A ( w - ) t  (U-)  = ;A (w-)B (U-)(  1 - tanh $ hw-), 
(3.20) 

where 

coth $ho, boson 
(3.21) 

fermion. 
B ( w )  = [ 

1, 
We can assemble equations (3.17)-(3.20) into a single expression 

W(s1,s2-+ - s 2 ) = -  :A(w(sA)B(o(sd){l -s2 tanh PJ[(r- 1)s +s~l),  (3.22) 

where we have written w ( s l )  for the general description of U+ and U-.  We compare this 
with Suzuki and Kubo’s expression for a system of N spins 

W(sl , .  . . ,s i+  . . . , - s i , .  . . , s )=(1 /27) ( l - s j  tanhPEj), (3.23) 
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where Ei is the local field at the jth site. Suzuki and Kubo comment that their T is taken 
to be a constant but may in general depend on the temperature and on spins other than 
the jth, but do not go further than this. Our calculation verifies this statement and 
defines the dependence of r on the properties of the reservoir. 

The transition probabilities (3.17)-(3.20) (or (3.22)) can readily be shown to satisfy 
detailed balance with the equilibrium probability function 

f'dsl, SZ) = exp(-PH,(sl, s~))/Tr exp(-/3Hs(s1, 4). 
We note that the transition probabilities assumed by Bolton and Johnson (1976) and 
given in equations (3.18) and (3.19) of that paper can be rewritten in the form 

W(sl, s2+ -sz )  = (1/2a) exp[(y - 1)/3Jssl] cosh /3J[(y - 1)s +sl] 

x{l -sz  tanhBJ[(y- l)s+sl]}. (3.24) 

Comparing this expression (3.24) with (3.22) given by the present treatment we see 
that while (3.24) contains the correct local field factor, the multiplicative factor differs 
from what we have calculated from the Liouville equation. Both expressions (3.22) and 
(3.24) agree in describing equilibrium correctly since any multiplicative factors cancel in 
equilibrium. However the rates of change of the mean order s ( t )  and two-particle 
correlation function d( t )  will depend on these multiplicative factors and the time- 
dependent treatment given for these in Bolton and Johnson has to be revised in the way 
presented in 5 4. 

4. Equations of motion for s(t) and &t) 

The equations of motion are obtained by substituting the expression (2.3) for ps(t)  in 
equations (3.12) and (3.13). These can be solved for ds/dt and dd/dt to give, for a 
boson reservoir, 

ds - A h )  
- 

dt cosh 2(y - 1)P.l~ -cosh 2/3J 

x [s sinh 2(y - 1)/3Js -4 sinh 2PJ- cosh 2(y - 1)BJs +cosh 2/34 (4.1) 
and 

dd 

x {s[cosh 2(y - 1)pJs - exp( - 2/3J)] - 4 sinh 2(y - 1)PJs). (4.2) 
For a fermion reservoir, 

ds - A b )  
dt - cosh 2(y - 1)/3Js +cosh 2/33 

x{s[cosh 2(y-l)/3Js+exp(-2/3J)]-sinh 2(y-l)/3Js} (4.3) 

x {s sinh 2(y - 1)/3Js - d[cosh 2(y - 1)pJs +cosh 2/3J] +sinh 2/3J}. (4.4) 
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In deriving (4.1)-(4.4) we have assumed that both the coupling constant g(w)  and 
the density of states D(w)  of the reservoir are sufficiently slowly varying so that we can 
write 

A ( w + ) = A ( o - ) = A ( w ) .  

To get the equilibrium solutions, we set d/dt = 0 in (4.1)-(4.4), and define ~ ( 0 0 )  = U, 
+(m)=q. An alternative way of getting the result is through the condition for 
equilibrium detailed balance, namely 

PO(l,l)W(l, l-, - l )=Po(l ,  - l )W( l ,  - l+ l )  

Po(-1, -l)W(--1, - l+l)=Po(-1,  l ) W ( - l , l +  -1) 

(4.5) 

(4.6) 

and by using (2.3) in equilibrium together with (3.17)-(3.20). Both ways agree in giving 

U = sinh 2(y - l)PJu/[cosh 2(y- 1)PJa +exp(-2PJ)] (4.7) 

(4.8) 77 = [cosh 2(y - 1)PJu - exp( - 2PJ)]/[cosh 2(y - 1)PJa + exp( - 2PJ)], 

which when y = 4 are the same as the expressions (3.22) and (3.23) of Bolton and 
Johnson (1976) calculated from the partition function for the two-site cluster. 

It will be noticed that the multiplicative functions on the right-hand side of (4.1) and 
(4.2) for the boson reservoir can be singular. This is not a fundamental weakness 
because it arises from the structure of the cluster which mirrors the infinite lattice and it 
implies that the influence of one of the spins being treated exactly can overweigh the 
influence on the other spin of the mean field from the boundary spins. A similar point 
was noticed by Bolton and Gruen (1976) in their numerical simulation of small Ising 
clusters. As the cluster size increases the effect of this difficulty will decrease. Further 
work is in progress on the analysis of the approach to equilibrium. 

5. Conclusion 

We have shown how time-dependent perturbation yields the dynamical solution for the 
spin cluster of two sites. Essentially it is the time-dependent constant coupling method. 
In the limit t -, a0 the long range order s ( t )  and nearest-neighbour correlation function 
+ ( t )  are exactly the values a, 7 respectively calculated from the equilibrium partition 
function. 
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